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Abstract. We consider, in the framework of local field theory with translation
symmetry, automorphisms connected with locally conserved currents. We show
that such automorphisms lead to symmetries, i.e. are implementable by unitary
operators, whenever the smallest mass in the theory is non-zero. Therefore we conclude
that a "spontaneously broken symmetry" is possible only in the event that the
smallest mass is zero. This establishes the theorem first conjectured by GOLD STONE.

I. Introduction

A great deal of attention has been recently focused upon the theory of
symmetries and * 'broken symmetries" of physical theories, not only in
the realm of elementary particles physics but also in the realm of solid
state physics and the many-body problem. As the terms "symmetry" and
' 'broken symmetry" have been used in various senses, let us immediately
describe what we understand by this terminology.

All physical theories, such as quantum mechanics, field theory, etc.
are at their most basic level algebraic and at this level all physical quan-
tities described by the theory form a *-algebra 21. In general there exist
isomorphisms, or automorphisms, of the algebra i.e. mappings of the
algebra into itself 21 -> 21, and these automorphisms form the basis
of the theory of symmetries. Although physical theories may be dealt
with algebraically it is more usual to work at the representation level.
Instead of considering the algebra 21 a representation of 21 by operators
acting in a Hubert space ξ) is considered and in all theories which are not
purely statistical the extra proviso is normally made that the representa-
tion should be irreducible. This specialization to a representation intro-
duces a distinction between the various possible kinds of automorphisms
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of 21. Some of these automorphisms are implementable by unitary opera-
tors acting in the representation space §, and are thus called symmetries,
whilst others are not implementable in this manner. By "spontaneous
breakdown of symmetry" we shall mean exactly that this latter alter-
native occurs [1].

One reason why symmetries have been of interest in field theory is
that in the Lagrangian formulation they lead not only to global con-
servation laws but also to laws of local current conservation. A recent
problem has been to study to what extent the converse is true. Do local
conservation laws lead to global symmetries ? We wish to study this
question in the framework of axiomatic field theory. There are essentially
two problems posed by the question. The first problem is to characterize
the conditions to be satisfied by the local current operators in order that
there exist an automorphism of the basic algebraic elements defining
the field theory. The second problem is then to find conditions under
which the automorphism leads to a symmetry. We will focus our atten-
tion on this second problem.

We start off, in Section 2, by defining our field theoretic framework
and the local conservation law. We assume that there is an automorphism
of the (7*-algebra of quasilocal operations associated with the local
current. We then consider, in Sections 3 and 4, under which conditions
this automorphism leads to a symmetry. We prove that there is a
symmetry if the smallest mass in the theory is non-zero. This result
agrees with the theorem, first conjectured by GOLDSTONE [2], which
states that if a local conservation law leads to a "broken symmetry"
then the smallest mass in the theory must be zero. For an investigation
of this problem which is similar in spirit to ours see STREATER [3].

II. Definitions and discussion

We consider an algebraic field theory of the type formulated by
HAAG and KASTLEE, [4]. However, we are not able to work in a purely
algebraic manner because we discuss the conserved current hypothesis
which is only defined for operators in Hubert space. Therefore we look
at representations of the theory but we can, without loss of generality,
consider only representations with special properties. Let us list the
structural properties which are relevant.

1. Local structure: Corresponding to each open region Φ of space-
time (Φ is supposed to be an open domain with compact closure) there
is a (7*-algebra 21(0) of (strictly) local operations. The set theoretic
union of all 21 (Φ) is a normed *-algebra and its uniform closure is a (7*-
algebra 21, the algebra of quasi-local operations. We consider a faithful
irreducible representation of 21 by bounded operators in a Hubert



110 DAΪΓIEL KASTLEE u. a.:

space S)1. In principle all faithful representations contain the same physi-
cal information [4].

2. Local commutativity: If the regions Φ1 and 02

 are totally space-
like to one another then

[91(0!), Sl(02)] = 0. (1)

3. Translation symmetry: Corresponding to translations y ~> y -f %
in space-time there exist automorphisms A -» A (x) of 21 such that 21(0)
goes into 21(0 + #). It is further assumed that in the representation under
consideration the translations are implementable by unitary operators

T(x), i.e.
A(x) = T(x)A T(x)-ι. (2)

4. Spectrum condition: The group of translation operators T(x)
has a spectral decomposition of the form

T(x) = E0 + f d E ( p ) e i » * . (3)

The operator EQ projects onto the vacuum state i.e. a state Ω which is
translationally invariant

T(x)Ω==Ω (4)

and E (p) is a projection-valued measure which is assumed to have support
only in F^ where

V+ = {p:p*^m* 3>β>0} (5)

It is well known that if the representation of 21 is irreducible then there
is only one invariant state.

5. Local current conservation: There exist for every test-function
/ (x) of class 2 four unbounded operators jμ (/) with the properties

a) Ω is the domain of jμ(f) and (Ω, jμ(f) Ω) = 0.
b) T (a) jμ (/) T-i (α) = jμ (/α) where /β (x) = f(x-a).

•>£*•(£)-«•
d) (β, [/„(/), A]Ω) = 0 for A ζ 21(0) if the support of f(x) is totally

space-like to 0. We take of course the natural definition

(Ω, [jμ(f), A]Ω) = (jμ({)Ω,AΩ) - (A*Ω, j μ ( f ) Ω ) . (6)

e) (β, ̂ (a?) jv(y)Ω) is a tempered distribution.
Assumptions 1.—5. are not sufficient to allow us to consider the

problem of symmetries and must be supplemented by further condi-
tions which may be of two types. Either we may assume further de-
tailed properties of the unbounded operators ./^ (/) e.g. properties con-
cerning the domain of jμ(f)9 and then attempt to prove the existence of

1 This presupposes that the algebra is primitive. However, the irreducibility is
not essential to our argument. It could be avoided if we assume instead that the
current is associated with the algebra.
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the group of automorphisms which would be expected to arise from
the local current hypothesis or we might assume the existence of the
automorphisms and characterize them by certain expected properties.
In either case the question then remains open as to whether or not there
exists a symmetry. As this latter question is the one which mainly
interests us at the moment we follow the more modest programme of
assuming the existence of automorphisms characterized as follows:

6. Group of automorphisms: There is a one-parameter group of auto-
morphisms A -> Aτ of the algebra 21 strongly continuous with respect
to τ, and with the properties

a) If
0j={a?; |x | + |s°|<i}, L>0

then
AL^φL) implies Aτ

L

and
b) If

/Λ(x)ζ0Λ and fd(xQ)
where

f l for | x | < Λ
and

then

* = (h K) h (*
and fdx0fd(x0)= 1}

R
lim (Ω,\j0(fRfa),A]Ω) (7)

for all strictly local A.
In order that assumption 6b) should be reasonable we must show that

the right hand side exists and is independent of the representative fd (x0)
of @d. However before we do this let us first discuss in heuristic terms the
reasons behind the latter assumption.

Using the local current we would normally believe that we could
define a local "charge" operator and that this would be formally given by

x,t), (8)

where the integration is over a finite volume. Then it should follow that
such expressions as CA (t) defined by

= lim ϊ f f i x j ύ ( i,t),A (9)
F->00 [γ J

exist, at least for strictly local A, because the commutator would be
independent of F when this volume is large enough. Further, because
the current jμ (x) is conserved it is to be expected that CA (t) is independent
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of time. Then for AL ζ 21 (ΦL) we would have formally

CA(t) = CA(V = \ f d*xj0(x,o),AL]. (9')
W^L J

In the same manner we would expect that the mapping

Aτ = lim expnτ f d?xjQ(n,t}\A expJ— ίτ f d?xj0(x,t)\ (10)
F->00 [ y J I F J

should have some meaning and then for AL £2l(0j&) we would argue
as above that

f d*xj0(x,o)ALQxp—iτ f d8a?/0(x,o) . (11)
|χ!£ϋ J ( \*\&L

On this heuristic level we then see that Aτ

L £ 21 (@L) and that

(
\
β, /d»a;7 β(x,() I^ iβ . (12)

7 J /

These are the counterparts of the assumptions contained in 6. The added
complications contained in 6b) are due to our having used the test-
function /#(x) to simulate the integration of ?'0(x, t) over a finite volume
and the test function fd(t) to smear out in the time component. As we
have already mentioned, it would be interesting to find what conditions
are necessary for jμ(x) in order that (11) could be given more than a
formal meaning but our assumption 6b) avoids this question. We wish
now however to prove that as a result of assumptions 1 — 5 the group
of automorphisms characterized by 6 is always unitarily implementable
in §. As preparation for the proof of this statement we first derive some
properties of vacuum expectation values.

III. Vacuum expectation values

Let us first show the consistency of assumption 6b) by proving
Lemma I. The commutator CL(fRfd) defined by

is independent of the choice of the functions /#(x) and fd(xQ) within the
classes &R and &d respectively and independent of the class &R for R > L + d.

Proof: Let us consider test-functions fdί (XQ) and fdz (XQ) from the classes
2dι and &dz respectively and take dλ ^ d2 and hence &dί ^ &dz. Using
these test functions we define f(x°) by

/(*")= f dx'oy^-f^x'*)} (13)
— oo

and note that
0 for -Szdt
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and

Now using assumption 5d) we have

f (fa -Jr) = f (/a/*,) - 7° (/a/d.) = J (V/Λ/) - (15)

But

unless J? < | x| < B + r and \x°\ < <Zj and thus

( Ω , [ i ( V f R f ) , A L ] Ω ) = 0 for R^L + d, (16)

by local commutativity.
Combining (15) and (16) we have

- (Ω, [f(fRfd2), AL]Ω) (17)

for R > L + rfj.
This shows that CL(fRfd) is independent of /d(#°) and the fact that

it is independent of the particular fR(x) and class 2R follows directly
from local commutativity.

As a result of the above Lemma we see that the right hand side of (7)
is indeed well defined and independent of fd(x°). Before we proceed to
prove other properties of vacuum expectation values let us introduce
subalgebras 2ln of 21 (n ̂  0) by the following definition

2ln = (A Ln Inf \\A - AL\ - > ol . (18)
n \ AL&(ΦLΓ L-+™ )

In this notation we of course have 21 = 2(0. We are now in a position to
prove

Lemma II. // A ζ 2ln with n ^ 2 then

for all s ^ 1 .

Proof: We will prove the lemma for s = 1, the result for «s > 1 follows
analogously. From the local conservation law

(20)

and because A ζ 2ίw we may write

A = AL+ΔAL, AL^(ΦL] (21)

with the assurance that
lim Ln\ΔAL\\ -0. (22)
-
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Let us choose L — —~— > we then have from local commutativity that

\ L \ α / J / g

Hence
Ω = 2

g 2c lim (Λ + r)2 ||Zl 4 £_<* || = 0 . (24)

lim

In the last estimate we have used the majorization

~fd W) ~ fR (x) (Ω9 Ϋ (x) jfc (y) Ω) fR (y] fd (

^c2(^ + r)4. (25)

To obtain this estimate we need only use the linked cluster property in
its weakest sense [5] i.e.

\(Ω, j.(χ) jβ(y) fl)| - > 0 . (26)
(x — y)a->— co

Hence
(27)

This estimate, and hence the result of Lemma I, can be improved in a

number of ways. Firstly, if we choose r — It then V/#(;r) ~ 0 ί-p-j and

if we further use the spectrum condition even with ra = 0 we have from
the results of ABAKI, HEPP, and EUELLE [6] that

(x~y?\(Ωίjol(x)jβ(x)Ω}\^c2 for (*_7/)2<o, (28)

and this allows us to deduce

(29)

If we use the strong spectrum condition m > 0 then RUELLE [7] has
shown that

lim (x-y)>*\(Ω,j.(x)jβ(y)Ω)] = 0 for all JV >0 (30)
(x — y)~ *"— °°

and hence we deduce the optimal majorization

li(VfBfd)Ω\\^c,E^. (31)

Thus the strong spectrum condition is irrelevant in the proof of
Lemma II but it is essential to prove

Lemma III. // A ζ 2ln then there is an A' £$in such that, given k ^ 1

{A - (Ω, AΩ)}Ω= (P°)fc AΏ (32)
and

{A* - (Ω, A*Ω)} Ω = (P°)fc A'*Ω (33)
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where P° is the energy operator (the infinitesimal generator of time trans-
lations).

Proof: We prove the lemma for k > 1 as follows. We first define

A = A — (Ω,AΩ) (34)

and consider the spectral decomposition of the translations,

(35)
Since

E0 + fdE(p) = I (36)
and

EQAΩ = 0 (37)
we have

AΩ = f d E ( p ) AΩ (38)
this can be written

AΩ = (P°)kf (pQ)-* dE(p) AΩ (39)

and, taking account of the energy gap, i.e. the fact that the projection-
valued measure dE(p) has its support contained in F^, we next write

AΩ = (P°)fc / g(pQ) dE(p) AΩ (40)

where we choose g (p°) to be a real even function of p° which is infinitely
differentiable and such that g(p°) = |£>°|~fc for \p°\ ^ m. The function
g ( x Q ) , the Fourier transform of g(p°), is also real and even and we have
used the notation

(41)

Let us take A' = A (<τ)_and we then notice that (38Jι, (39), and (40) hold
with A replaced by ^4* = A* — (Ω, A*Ω) where A* (g) = A (g)* owing
to the fact that g is real. To complete our proof we must finally show that
A ( g ) ζ2lw when A £2ίn. For this we notice that because g(pQ) is ab-
solutely integrable and infinitely differentiable it follows that g(x°)
is a continuous function decreasing rapidly at infinity. We can therefore
find a decomposition of g (x°) for L ^ 0 such that

(42)

where g'L (XQ) is a continuous function which vanishes outside of the inter-
val [ — L, + L] and where g"L (x°) is a bounded continuous function with
the property that

(43)

where || j^ denotes the .Lrnorm:

(44)
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Now as A ξ 2tn we may assume the decomposition A — AL -f- Δ AL

where
AL^(0L) and &\\ΔAL\r - » 0 . (45)

Jj — > OO

We finally have that IL(g'L) £ 2l(04£) and

£»| Jfo) - AL(g'L)\\ g £»| Ji(p2)|| + £»M Jίto)|| <

£&\Il\>\fi\ί + &\ΔAL\>\g\ίI^Q ( }

as a consequence of (43) and (45) (notice that \\Aχ,\\ is bounded since

The proof of the lemma for k = 1 is slightly complicated by the fact
that g(pQ) is no longer integrable; however g(xQ) dxQ is still a bounded
measure (with a logarithmic singularity at the origin) ([8], p. 360,
formula 34) and this is sufficient to construct a proof.

Now using Lemmas II and III we can prove the following Lemma
which is the only result essential for the ensuing discussion of the symme-
try associated with our group of automorphisms

Lemma IV. If A ζ 2ln with n Ξ> 2 then

lim ( Ω , [ ? ( f R f d ) , A ] Ω } = 0. (47)
R— >oo

Proof: As (Ω, f(fRfd)Ω) = 0 we have that

(Ω, 0°(/*/d), A\Ω) - (Ω, 0°(/ii/d), 4]ί2) (48)

where, as above
A = A — (Ω,AΩ). (49)

Now from Lemma III there is an A' ζ 21Λ such that

Jβ - (P°)2 ^i'β and J*β - (P°)2 A'*Ω (50)
and hence

Ω)

To obtain the last equality we have used the fact that

= if (fB ^} Ω . (52)

Thus
Urn ( Ω , [ f ( f R f d ) , A ] Ω ) = 0 (53)

jR->oo

as a result of (51) and Lemma II.
Lemma IV depends upon our assumption that the smallest mass

ra is greater than zero because we needed the result of Lemma III to
complete the proof. We note that under the same assumption, we can
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prove that for A ζ 2ln with n ̂  2

lim (β,0° (/«/„), 4}fi) = 0 (54)

by using Lemma II and arguing as in the proof of Lemma IV ({ } denotes
an anticommutator). Hence we can deduce that

Blmio(β,Jβ(/Λ/d)4fl) = 0 . (55)

As explained in the discussion following the proof of Lemma II these
results can even be extended through use of the strong spectrum condi-
tion to all A ζ Slj/g. This latter result is however optimal as may be
inferred from discussion of the free charged field.

We have now prepared the ground for our discussion of symmetries
which appears in the next section.

IV. Symmetry group

The main result of the present work is now summarized by the
following

Theorem. As a consequence of assumptions 1. — 6. the automorphisms
A -> Aτ are unitarily implementable. Specifically there exists a group of
operators U(r) such that

A* = UWAUfr)-1 (56)
where

U(τ + τ')= U(τ) U(τ') (57)

tf-i(τ)= Z7*(τ) = U(-τ) (58)
and

ϋ(τ)Ω = Ω. (59)

Proof: Let us first note that if (56), (57), and (58) were valid then it
would immediately follow that

(Ω,A*Ω) = (Ω,AΩ). (60)

A fact that is perhaps less well known2 is that the converse is also
true. Namely if (60) is true for all values of τ then there exist a group
representation τ->Z7(τ) with the properties (56), (57), (58), and (59).
This is an easy consequence of the Gelfand-Neumark- Segal [10, 11]
construction. Let us recall that, if we denote abstract elements of 21
by a, b etc. and their respective representatives in the representation
under consideration by A, B etc. the latter are obtained in the following
way : the Hubert space § is the completion of the quotient 2l/2tω, where
Qtco is the null-ideal of the positive form ω associated with the cyclic
state β, i.e.
_ ω (a) = (Ω, A Ω) (61)

2 However, see [9], Exercise 2.12.11.
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and

2ίω = {a 6 21; ω(α*α) - 0} . (62)

We will denote by d the class of a ζ 21 modulo 9ΐω. We then have

(AΩ, BΩ) = (α, δ) = ω(α*δ) (63)
and

Ab^ab. (64)
We start from (60) i.e.

ω(ατ) = ω(α), α ζ 21 (65)
and define U (τ) by

TT / \ Λ ~ //2£}\
L/ (T) tt = Or . V^β)

C7 (τ) is thus coherently determined as a unitary operator on § because

(ϋ(τ)d, ϋ(τ)b) = ω((ατ)*δτ) = ω((α*δ)τ) - ω(α*δ) - (d, δ) . (67)

We have furthermore

because using (66) it is immediately seen that the effect on b of both sides

of (68) is aτb. Finally τ -> Z7(τ) is obviously a group representation which
is strongly continuous due to our assumption that the one parameter
group of automorphisms a -> aτ is strongly continuous and the fact that
ω is continuous (of norm unity), thus

\\U(τ)d—d\\ = ω((aτ — α)* (aτ—α)) ̂  ||(αr—α)* (αr—α)|| = ||αr—α||2. (69)

Notice that U(τ)Ω = ί3 because β = e and er = e, where e is the unit
element of 2ί.

The proof of our theorem is now reduced to proving (60). It is sufficient
to verify this for a strictly local A because |ω(α)| ^ ||α|| and every
α ζ 21 is the limit in the norm topology of strictly local elements. Proving
(60) is equivalent to showing that, for all a

— (Ω, AτΩ] - 0 . (70)
(IT ' τ — a

But

d
~dτ~ = 0. (71)

The last expression vanishes according to assumption 6b), Lemma IV
and the fact that Aσ is strictly local, a consequence of assumption 6a).

Y. Summary and Conclusions

In the foregoing we have considered the problem of the existence of
symmetries arising from automorphisms which are connected to locally
conserved currents. We characterized the automorphisms by certain
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minimal assumptions which would be expected in all cases except for
those automorphisms inherent in the space -time structure (translations,
rotations and pure Lorentz transformations). Thus we would believe
our characterization covers all automorphisms of the "internal" type
e.g. gauge transformations of the first kind, isotopic spin, $£7(3) etc.
In the framework of a field theory with local structure, translation
in variance and a cyclic vacuum state we have shown that the auto-
morphisms always lead to symmetries if the smallest mass in the theory is
non-zero. Thus in the same framework we may conclude that if there is
a "broken symmetry", the smallest mass must be zero. This conclusion
confirms the conjecture of Goldstone.

Although we have followed Haag in formulating our field theory in
an algebraic manner, our methods can also be applied to a Wightman
type field theory. It might be stressed that although we have used an
essentially relativistic framework we have nevertheless not needed to
use the full Lorentz symmetry. Our results are independent of the
existence of unitary operators implementing the homogeneous Lorentz
group and consequently independent of the existence of co variant fields.
The properties which are of major importance in the foregoing are the
principle of locality, local commutativity and translation symmetry.
These properties combined with the assumption that the smallest mass
is non-zero imply that we have a theory of only short-range correlations
and this does not allow a spontaneous breakdown of symmetry.

Let us conclude with a few remarks concerning further expected
properties of the type of automorphism we have considered. These
automorphisms should have the form

Km e

iτ* V*f*> Ae-iτ* U***> (72)
R-+00

which should be compared to the heuristic form (10). We have left to
a further paper the consideration of the properties of jμ(f) which are
necessary to derive (72). However, we note firstly that as a consequence
of (72)

Aτ(x) = A(x)τ .

Secondly we remark that although in the case of a symmetry

(Ω,AτΩ) = (ΩAΩ) (73)

it should not be inferred that the vector ΩR defined by

ΩR = eiτM*M Ω (74)

converges, in any sense, to the vector Ω. Let us assume that it would
converge weakly, then we would immediately infer that it converges
strongly because

\\ΩB\\ = 1 .
Commun. math. Phys., Vol. 2 9
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However in this case we may use the inequality

\(Ωa, AΩR) - (ΩAΩ)\ <: 2\\ΩR-Ω\\ \\A\\ (75)

to infer that the left hand side tends to zero uniformly in A. This con-
clusion can easily be seen to be contradictory by choosing an A localized
in the region where /#(#) falls off to zero.
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